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Confidentiality1

Integrity2

Privacy4

Protecting from disclosure 

Modification or deletion

free from public attention, not observed 
or disturbed

Scalability5
ability to be used in a range of 
capabilities

Data Security Requirements (CIA triad)

Availability3
Users can access information
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Solutions

Symmetric encryption: AES, DES, 3DES1

2 Asymmetric encryption RSA, ECDSA, DSA….

3

5

Digital signature

Access control

5 5
4

Data masking

5 5
55
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Resiliency threads

Environmental threats1

Deliberate threats2

Accidental threats3
• PC errors, Virus, Spam, etc.

• Earthquakes, floods, fire, etc.

• Interception, hacker attacks, etc.

Unfairness4

• User errors, carelessness, 

curiosity, falsification, etc.
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Resiliency threads

Environmental threats1

Deliberate threats2

Accidental threats3

• Earthquakes, floods, fire, etc

Unfairness4

• User errors, carelessness, 

curiosity, falsification, etc.

Solutions

Erasure codes2

Replication1

Error detection-correction3

Checkpointing4

• Interception, hacker attacks, etc

• PC errors, Virus, Spam, etc.
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Security and Resiliency

Protecting data from 
• Unauthorized access
• Data modification
• Corruption
• Loss
• Cyberattack or data breach
• Destructive force

Data security 

Ability 
• Protect 
• Maintain
• Recover after 

• equipment failure
• power outage
• disruption in 

• servers, 
• networks,
• storages, 
• data centers

Data Resilience
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Data Storage
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Trust Model (Perimeter-Based Security)

Trust-based models assume

• Everything inside the perimeter is safe

• Threats only come from outside the firewall

• Users and devices inside the perimeter are implicitly trusted

• Security is enforced at the entry point (e.g., firewalls, VPNs)

• “Castle and moat" approach

Limitations:

• Cannot protect from insider threats or compromised devices.

• Lateral movement within the perimeter is often unmonitored.

• Does not protect against 

• remote working

• mobile devices

• cloud services
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In “Trust” we have to trust

• Computers under firewall

• Users 

• Administrators

• Programmers

• Technicians

• Encryption methods

• Storages 

• Backups mechanisms

• Disk-based hardware

• Transmission security and reliability

etc.
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Data Storage
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Distributed data storage
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Multi-cloud distributed data storage

• Multiple cloud computing and storage services

=

Single heterogeneous architecture
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Edge computing

Processing

Communication

Intelligent 
sensors

Fog 

computing

Cloud computing

Communication

Storage-
processing

Internet of Things with Multi-cloud
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Security collusion

Improper secret agreement between two or 

more malicious entities, to obtain 

unauthorized access to confidential data

Collaborate to 

• decrypt sensitive data

• compromise security mechanisms

Result

• Account hijacking

• Data loss

• Abuse and illegal use of cloud services

• Denial Of Service 

Traditional solutions:

• Secret sharing scheme

• Asymmetric and Symmetric cryptosystems

• Access structure 

14
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Zero-Trust Model: “Never trust, always verify”:

• No trust any user, device, or system—inside or outside the network.

• Every access must be continuously verified.

• Security is enforced at every layer: user, device, app, and data.

Core Principles of Zero-Trust:

• Least privilege access: Users get only the minimum access necessary.

• Micro-segmentation: Network is divided into small zones.

• Strong identity verification: Multi-factor authentication (MFA), biometrics, etc.

• Real-time monitoring and analytics: Constant assessment of trustworthiness.

Benefits of Zero-Trust:

• Reduces risk from insider threats and compromised credentials.

• Better suited for cloud, BYOD “Bring Your Own Device”, and hybrid environments.

• Enhances visibility, control, and compliance.

Challenges in Implementation: 

• Requires new policies.

• Needs investment in identity management, monitoring tools, and network segmentation.

• Integration with existing systems can be complex.
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Privacy Preserving with Zero Trust
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RRNS Multi-Cloud Storage

X

Conversion 
to Residues

X mod p1 X mod p2 X mod p3 X mod p4 X mod p5 X mod p6

Retrieving Original Data
𝑿 = σ𝒊=𝟏

𝟒 𝒙𝒊𝑷𝒊𝒃𝒊  𝐦𝐨𝐝 𝑷.

x1 x2 x3 x4 x5 x6

𝑷 = ς𝒊=𝟏
𝟒 𝒑𝒊,

𝑷𝒊 = 𝑷/𝒑𝒊

𝒃𝒊 = 𝑷𝒊
−𝟏

𝒑𝒊

6 moduli p1,p2,…,p6

- own encryption

- full control over data storage
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Cloud storage as a service (StaaS)

Name URL

Alibaba Cloud https://www.alibabacloud.com/

Amazon Drive https://www.amazon.com/gp/drive/about

Box http://box.com/

certain safe https://certainsafe.com/

Dropbox http://dropbox.com/

Egnyte https://egnyte.com/

Elephant drive https://home.elephantdrive.com/

FlipDrive https://flipdrive.com/

Google Drive https://www.google.com/drive/

Hubspot https://www.hubspot.com/

iCloud https://www.icloud.com/

IDrive https://www.idrive.com/

Jumpshare https://jumpshare.com/

JungleDisk https://www.jungledisk.com/

Justcloud http://www.justcloud.com/

Name URL

MediaFire https://www.mediafire.com/

Mega https://mega.nz/

one backup https://mozy.com/

One Drive https://onedrive.live.com/

pCloud https://www.pcloud.com/

Rackspace https://www.rackspace.com/cloud

Salesforce https://www.salesforce.com/

Sharefile https://www.sharefile.com/

spideroak https://spideroak.com/one/

storegate https://www.storegate.com/gl/

SugarSync https://www2.sugarsync.com/

sync https://www.sync.com/

Windows

Azure

https://azure.microsoft.com/en-

us/services/storage/

Yandex Disk https://disk.yandex.com/
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Reliability

comparison of cloud services by providing reliable and objective performance analysis

https://cloudharmony.com/status

Service Name Region 30 Day Availability
1 block = 1 mins

Outages Downtime

Faction Cloud seattle 83.1928% 18 121.01 hours

eApps Cloud richmond 99.8051% 1 1.4 hours

UpCloud london 99.8123% 1 1.35 hours

Linode Cloud Hosting singapore 99.9523% 1 20.6 mins

Vultr silicon-valley 99.9751% 2 10.77 mins

UpCloud singapore 99.976% 5 10.37 mins

Vultr miami 99.9802% 11 55.13 mins

Linode Cloud Hosting london 99.9856% 1 6.23 mins

Exoscale Compute DE-FRA-1 99.9883% 1 5.05 mins

Cloud Central canberra 99.9914% 2 3.73 mins

Exoscale Compute BG-SOF-1 99.9918% 1 3.3 mins

DigitalOcean ny1 99.9938% 2 2.68 mins

Vultr dallas 99.9951% 1 2.12 mins

StratoGen VMware Cloud denver 99.9976% 1 1.02 mins

IBM Cloud Compute MEL 99.9984% 1 41 secs

StratoGen VMware Cloud docklands 99.9985% 1 39 secs

Alibaba Elastic Compute 

Service

ap-northeast-1 100% 0 None

https://cloudharmony.com/status
https://cloudharmony.com/cloudsquare#compare-faction:compute
https://cloudharmony.com/cloudsquare#compare-eapps:compute
https://cloudharmony.com/cloudsquare#compare-upcloud:compute
https://cloudharmony.com/cloudsquare#compare-linode:compute
https://cloudharmony.com/cloudsquare#compare-vultr:compute
https://cloudharmony.com/cloudsquare#compare-upcloud:compute
https://cloudharmony.com/cloudsquare#compare-vultr:compute
https://cloudharmony.com/cloudsquare#compare-linode:compute
https://cloudharmony.com/cloudsquare#compare-exoscale:compute
https://cloudharmony.com/cloudsquare#compare-cloudcentral:compute
https://cloudharmony.com/cloudsquare#compare-exoscale:compute
https://cloudharmony.com/cloudsquare#compare-digitalocean:compute
https://cloudharmony.com/cloudsquare#compare-vultr:compute
https://cloudharmony.com/cloudsquare#compare-stratogen:compute
https://cloudharmony.com/cloudsquare#compare-softlayer:cloudlayer
https://cloudharmony.com/cloudsquare#compare-stratogen:compute
https://cloudharmony.com/cloudsquare#compare-alibaba:compute
https://cloudharmony.com/cloudsquare#compare-alibaba:compute
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Secret Sharing Scheme

(3,5)−RRNS settings

0.00099030

0.00092609

0.00021404

0.00109019

0.00109874

0.00269549

0.00145548

2.18

1.46

0.71
0.73

0.75
0.65

2.98 3.06
1.70

2.30

2.55
2.62

2.93
3.25

noAccess probability

Upload speed (MB/s)

Download speed(MB/s)

Adaptive Multi-Cloud Storage



CICESE Parallel Computing Laboratory

22

0.00099030

0.00092609

0.00021404

0.00109019

0.00109874

0.00269549

0.00145548

2.18

1.46

0.71

0.73

0.75

0.65
2.98 3.06

1.70
2.30

2.55

2.62

2.93

3.25

noAccess probability

Upload speed (MB/s)

Download speed(MB/s)

Adaptive Multi-Cloud Storage



CICESE Parallel Computing Laboratory 23

Secret Sharing Scheme

(3,5)−RRNS settings

0.00099030

0.00092609

0.00021404

0.00109019

0.00109874

0.00269549

0.00145548

2.18

1.46

0.71
0.73

0.75
0.65

2.98 3.06
1.70

2.30

2.55
2.62

2.93
3.25

Adaptive Multi-Cloud Storage



CICESE Parallel Computing Laboratory

• Shared resources

• Hybrid infrastructure

• Illusion of infinite computing resources on demand

• Scalability and flexibility (dynamic elasticity)

• Massive, diverse, incomplete, heterogeneous data

• Virtualization, loosely coupling applications to the 

infrastructure

• Resource provisioning time variation

• Variation in data transmission

• Workload uncertainty

24

Zero Trust uncertainty in clouds



CICESE Parallel Computing Laboratory 25

• How to select parameters of the storage? 

• How many storages should be used?

• How to select clouds from available?

Optimization problem
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𝒄𝒋 = {𝒆𝒓𝒓𝒋 } 

RRNS (𝑘, 𝑛) 

𝑪 = {𝒄𝟏, 𝒄𝟐, … , 𝒄𝑵}. Pr k, n

{𝒄𝒊𝟏, 𝒄𝒊𝟐, … , 𝒄𝒊𝒏}

• Estimate and classify  reliability levels

• Find adequate settings.

selected storages

Dynamically adapt settings for security concerns

Dynamic Cloud Selection
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Dynamic Cloud Selection

Google drive parameters 

K = 3

selected storages

𝐶 = {𝑐1, 𝑐2, … , 𝑐7}. 𝑐𝑗 = {𝑒𝑟𝑟𝑗 } RRNS (3, 5) 

{𝑐𝑖1, 𝑐𝑖3, … , 𝑐𝑖5}

NN for adaptive security
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Zero Trust in AI

Health Care case
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Machine Learning as a Service (MLaaS)

• Machine Learning tools as a component of cloud computing.

• Flexible and scalable solution.

A critical limitation of the adoption of MLaaS

• low protection of sensitive data in an unsecured shared 

environment

Open problem: Privacy-preserving ML
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Deep Neural Networks (DNN ) 

DNN has been used in 

several disciplines, including 

• medical image 

classification

• segmentation tasks:

• X-ray 

• MRI

• Histopathology

• Positron Emission 

Tomography (PET)
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Open challenges in the DNN TRUST:

• Privacy and security issues

• Large volume of images

• Variability in image quality
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AI for Health Care

a. Breast cancer

b. Skin cancer

c. Brain tumor

d. COVID-19 screening

e. Thyroid ultrasound

f. Alzheimer's disease

etc,
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Alzheimer’s Disease (AD)

• progressive neurodegenerative disease that affects 

➢ memory, thinking, orientation, and behavior

• most common form of dementia worldwide

➢ 10% of older adults (Seniors) in México suffer from it

                                                                              

AD causes gradual morphological changes in a brain

Magnetic Resonance Imaging (MRI)

• standard method of AD detection

Sano Alzheimer
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Alzheimer 4 classes

Normal             Mild                 Moderate          Severe
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AD classification

Para la clasificación de la EA por IRM existen dos vías

➢ Clasificación Binaria

S EA

➢ Clasificación Multiclase

S DCL EA

ND DML DL DM

Clases Abreviación 

Sano S

Deterioro cognitivo 

leve
DCL

Alzheimer EA

No demente ND

Demente muy leve DML

Demente leve DL

Dementes 

moderados
DM
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Magnetic Resonance 

Imaging MRI 

Hospitals handle a large volume of data such as:

• Personal data 

• Medical Records 

• Studies 

o Laboratory 

o Electrocardiograms 

o Image

Regulations 

There are regulations in place to manage 

this data.

• Sensitive Data

• Patient privacy must be ensured.

• Data anonymization is required

There are challenges in accessing this data:

• Data sharing

• Database creation

• Training computational models



Federated Learning

A way to Zero Trust 
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Federated Learning in Health Care
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Types of Federated Learning

Horizontal Vertical

• Horizontal: Mismas características, pero diferentes instancias 

• Vertical: Mismas instancias, pero con características diferentes
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Horizontal FL

41
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Federated Learning Models

Federated Learning 

Type
Data Distribution Description

Horizontal (HFL) Same columns, different rows.
Multiple nodes with the same features but 

different instances.

Vertical (VFL) Different columns, same rows.
Multiple nodes with different features about 

the same instances.

Federated Transfer 

Learning

Different columns and 

different rows.

Combines FL with transfer learning for 

heterogeneous data.

Semi-Supervised
Combination of labeled and 

unlabeled data.

Utilizes labeled and unlabeled data across 

nodes.

Asynchronous
No synchronization required 

between nodes.

Allows asynchronous model updates 

between nodes.

Hybrid
Combination of different 

columns and rows.

Combines characteristics of HFL and VFL 

for heterogeneous data.



Privacy Preserving Processing

Homomorphic Encryption
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Privacy Preserving Processing: Cryptography does not help  

Caesar cipher

Enigma

44
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Homomorphic Encryption foundation

• A function applied to ciphertexts provides the same (after decryption) result as applying the 
function to the original unencrypted data.

• Lattice-based schemes whose security is based on the hardness of the Learning with Errors 
(LWE) or Ring LWE (RLWE) problems. 

• Homomorphic Encryption (HE) exploits the hardness of identifying a secret 𝒔k from noisy pairs 
of the form 𝒑𝒌 = 𝑏, 𝑎 = − 𝑎 ∙ 𝑠𝑘 + 𝑒 𝑞, 𝑎

     where 𝑠𝑘, 𝑎, 𝑒 ∈ 𝑅𝑞 = ℤ𝑞[𝑋]/(𝑋𝑛 + 1), 

• 𝑎 ← 𝑈(𝑅𝑞 
) and 𝑒 ← 𝜒err. 

• Encrypt: 𝑚, 0 + 𝑝𝑘 = 𝑚 − 𝑎 ∙ 𝑠𝑘 + 𝑒, 0 + 𝑎 = 𝑐0, 𝑐1 = 𝒄 (two polynomials)

• Decrypt: 𝑚′ = 𝑐0 + 𝑐1 ∙ 𝒔𝒌 = 𝑚 − 𝑎 ∙ 𝑠𝑘 + 𝑒 + 𝑎 ∙ 𝑠𝑘 = 𝑚 + 𝑒 ≈ 𝑚
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Homomorphic Encryption foundation

Polynomial ring R= ℤ[𝑋]/f(X), where 
• ℤ[𝑋] - polynomial ring with coefficients in ℤ 
• f(x) is a cyclotomic polynomial of degree d that is the unique irreducible polynomial 

with integer coefficients that is a divisor of xn−1 
In practice, f(x)=Xd+1 and d=2n. 
Elements of R are polynomials of degree less than d and coefficients in ℤ. 
• q - coefficients modulus 
• Rq[x]= ℤ𝑞[x]/f(x)

• ℤ𝑞[x] - polynomial ring with coefficients modulo q. 

• Rq[x] are polynomials of degree less than d and coefficients modulo q.
• [x] rounding to the nearest integer. 
• χerr and χkey are distributions 

Secret key is a polynomial sk <-χkey with binary coefficients randomly sampled from χkey.

Public key pk is a couple of two polynomials 𝒑𝒌 = 𝑏, 𝑎 = − 𝑎 ∙ 𝑠𝑘 + 𝑒 𝑞, 𝑎

Public key is sampled a from the  ring Rq ,  a <- Rq, and a random error e from χerr e <- Xerr. 
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HE taxonomy 

Partially homomorphic Encryption (PHE):
▪ Supports only addition or multiplication. 

Somewhat Homomorphic Encryption (SWHE):
▪ Bounded additions and multiplications
▪ Computationally cheap.
▪ No bootstrapping
▪ Pre-2009 schemes were somewhat 

homomorphic.

Fully Homomorphic Encryption (FHE)
▪ Unbounded additions and multiplications
▪ Computationally expensive
▪ Bootstrapping notion

By supported arithmetic operations By type of data

Logical (Boolean)
▪ FHEW
▪ TFHE

Integer based
▪ Brakerski-Gentry-Vaikuntanathan (BGV)
▪ Brakerski/Fan-Vercauteren (BFV)
▪ Lopez-Tromer-Vaikuntanathan (LTV)
▪ Doroz-Hu-Sunar (DHS)

Fixed-precision numbers
▪ Cheon-Kim-Kim-Song (CKKS)
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General-purpose HE libraries

Tool Support Pros Cons

SEAL Microsoft
Well-documented

Easy security parameters setting

Poor flexibility

Limited number of supported 

schemes

HElib IBM
Efficient homomorphic 

operations

Low bootstrapping 

performance

Complicated security 

parameter setting

TFHE Fast bootstrapping
Poor performance for simple 

tasks

PALISADE

OpenFHE

DARPA, 

MIT, 

UCSD, etc.

Multiple HE schemes

Cross-platform

Poor documentation and 

support
cuHE

Mass parallelism and high 

memory bandwidth of GPUs

HEAAN

Seoul 

National 

University

Operations between rational 

numbers

HE-

transformer
Intel

Integration with deep learning 

libraries

Extension of SEAL
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Homomorphic Neural Network

𝛴

ҧ𝑥1

ҧ𝑥2

ҧ𝑥𝑖

ഥ𝑤1 

ഥ𝑤2

ഥ𝑤𝑖

Weighted sum.

ത𝑦 = ഥ𝑤1 ҧ𝑥1 ഥ𝑤2 ҧ𝑥2 ഥ𝑤𝑖 ҧ𝑥𝑖

f ()

ሷ𝑓𝑘 = 𝑎0
𝑘 + 𝑎1

𝑘𝑥 + 𝑎2
𝑘𝑥2 + ⋯ + 𝑎𝑛

𝑘𝑥𝑛

...

ത𝑦

... ሷ+ ሷ+ ሷ+

ሷ+ሷ+ ሷ+ ሷ+

ReLU

Approximating an activation function
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Aproximating 𝒔𝒊𝒈𝒏 (time)

Timings (ms) for the four processes in a HE scheme

Performance (ms) of state-of-the-art homomorphic 
comparison approaches 

Operations:

▪ Addition: 0.087 ms, HE 11.7310 ms

▪ Multiplication: 0.099 ms, HE 30.2540

▪ Comparison: 0.0464 milliseconds, HE 143.28 

ms

HE comparison needs to be optimized; 
otherwise, it is inapplicable.

Homomorphic operations:

Slight improvements of homomorphic comparison are high steps toward a 
privacy-preserving model



Self-Learning Activation Functions
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Self-Learning Activation Functions (SLAF)

• We approximate the activation function by a polynomial at each neuron 
independently with trainable coefficients as

• Training process aims to find:

✓ Weights 𝑤

✓ Coefficients 𝑎0
𝑘 , 𝑎1

𝑘 , … , 𝑎𝑛
𝑘

ሷ𝑓𝑘 = 𝑎0
𝑘 + 𝑎1

𝑘𝑥 + 𝑎2
𝑘𝑥2 + ⋯ + 𝑎𝑛

𝑘𝑥𝑛

where 𝑎0
𝑘 , 𝑎1

𝑘 , … , 𝑎𝑛
𝑘 denote the trainable coefficients of the polynomial ሷ𝑓𝑘 at 

neuron 𝑘.

• Activation function approximation is optimized for a given problem and 
dataset. 

ത𝑦𝑘 ← ሷ𝑓𝑘  ഥ𝑤𝑖
𝑘 ሷ× 𝑐𝑖

𝑘 ሷ+ ҧ𝛽𝑘

Homomorphic neuron 𝑘 with a SLAF ሷ𝑓𝑘
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Federated Learning privacy preserving
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Thanks for the team
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Team
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Thanks for your attention!
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