

From Trust to Zero-Trust: Rethinking Privacy and Security in the Cloud Era

Andrei Tchernykh

CICESE Research Center, Ensenada, Baja California, México chernykh@cicese.mx http://usuario.cicese.mx/~chernykh/

- Head of "Parallel and Cloud Computing Laboratory" at CICESE, Mexico
- Adjunct Chief Scientist (habilitation) of the Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
- Head of "Laboratory of Problem-Oriented Cloud Computing" at South Ural State University. Chelyabinsk, Russia.

CIBERTIC 2025

Congreso Internacional de Ciberseguridad, Tecnologías, Innovación y Ciencia Guadalajara, Jalisco, México, May 20-22, 2025

Data Security Requirements (CIA triad)

Data Security Requirements (CIA triad)

2

3

4

Resiliency threads

Earthquakes, floods, fire, etc.

Deliberate threats

• Interception, hacker attacks, etc.

Accidental threats

• PC errors, Virus, Spam, etc.

Unfairness

• User errors, carelessness, curiosity, falsification, etc.

Resiliency threads

Security and Resiliency

Data security

Protecting data from

- Unauthorized access
- Data modification
- Corruption
- Loss
- Cyberattack or data breach
- Destructive force

Ability

- Protect
- Maintain
- Recover after
 - equipment failure

Data Resilience

- power outage
- disruption in
 - servers,
 - networks,
 - storages,
 - data centers

Data Storage

Trust-based models assume

- Everything inside the perimeter is safe
- Threats only come from outside the firewall
- Users and devices inside the perimeter are implicitly trusted
- Security is enforced at the entry point (e.g., firewalls, VPNs)
- "Castle and moat" approach

Limitations:

- Cannot protect from insider threats or compromised device
- Lateral movement within the perimeter is often unmonitored.
- Does not protect against
 - remote working
 - mobile devices
 - cloud services

In "Trust" we have to trust

- Computers under firewall
- Users
- Administrators
- Programmers
- Technicians
- Encryption methods
- Storages
- Backups mechanisms
- Disk-based hardware
- Transmission security and reliability etc.

Data Storage

Distributed data storage

Distributed Centralized Decentralized

• Multiple cloud computing and storage services

Single heterogeneous architecture

Security collusion

Improper secret agreement between two or more malicious entities, to obtain unauthorized access to confidential data

Collaborate to

- decrypt sensitive data
- compromise security mechanisms
 Result
- Account hijacking
- Data loss
- Abuse and illegal use of cloud services
- Denial Of Service

Traditional solutions:

- Secret sharing scheme
- Asymmetric and Symmetric cryptosystems
- Access structure

- No trust any user, device, or system—inside or outside the network.
- Every access must be continuously verified.
- Security is enforced at every layer: user, device, app, and data.

Core Principles of Zero-Trust:

- Least privilege access: Users get only the minimum access necessary.
- **Micro-segmentation**: Network is divided into small zones.
- **Strong identity verification**: Multi-factor authentication (MFA), biometrics, etc.
- **Real-time monitoring** and analytics: Constant assessment of trustworthiness.

Benefits of Zero-Trust:

- **Reduces risk from insider threats** and compromised credentials.
- Better suited for cloud, BYOD "Bring Your Own Device", and hybrid environments.
- Enhances visibility, control, and compliance.

Challenges in Implementation:

- Requires new policies.
- Needs investment in identity management, monitoring tools, and network segmentation.
- Integration with existing systems can be complex.

Privacy Preserving with Zero Trust

RRNS Multi-Cloud Storage

- own encryption
- full control over data storage

Name	URL	Name	URL
Alibaba Cloud	https://www.alibabacloud.com/	MediaFire	https://www.mediafire.com/
Amazon Drive	https://www.amazon.com/gp/drive/about	Mega	https://mega.nz/
Box	http://box.com/	one backup	https://mozy.com/
certain safe	https://certainsafe.com/	One Drive	https://onedrive.live.com/
Dropbox	http://dropbox.com/	pCloud	https://www.pcloud.com/
Egnyte	https://egnyte.com/	Rackspace	https://www.rackspace.com/cloud
Elephant drive	https://home.elephantdrive.com/	Salesforce	https://www.salesforce.com/
FlipDrive	https://flipdrive.com/	Sharefile	https://www.sharefile.com/
Google Drive	https://www.google.com/drive/	spideroak	https://spideroak.com/one/
Hubspot	https://www.hubspot.com/	storegate	https://www.storegate.com/gl/
iCloud	https://www.icloud.com/	SugarSync	https://www2.sugarsync.com/
IDrive	https://www.idrive.com/	sync	https://www.sync.com/
Jumpshare	https://jumpshare.com/	Windows	https://azure.microsoft.com/en-
JungleDisk	https://www.jungledisk.com/	Azure	us/services/storage/
Justcloud	http://www.justcloud.com/	Yandex Disk	https://disk.yandex.com/

Data access speed

Reliability

comparison of cloud services by providing reliable and objective performance analysis

Service Name	Region	30 Day Availability 1 block = 1 mins	Outages	Downtime
Faction Cloud	seattle	83.1928%	<u>18</u>	121.01 hours
eApps Cloud	richmond	99.8051%	<u>1</u>	1.4 hours
<u>UpCloud</u>	london	99.8123%	<u>1</u>	1.35 hours
Linode Cloud Hosting	singapore	99.9523%	<u>1</u>	20.6 mins
<u>Vultr</u>	silicon-valley	99.9751%	<u>2</u>	10.77 mins
<u>UpCloud</u>	singapore	99.976%	<u>5</u>	10.37 mins
<u>Vultr</u>	miami	99.9802%	<u>11</u>	55.13 mins
Linode Cloud Hosting	london	99.9856%	<u>1</u>	6.23 mins
Exoscale Compute	DE-FRA-1	99.9883%	1	5.05 mins
Cloud Central	canberra	99.9914%	2	3.73 mins
Exoscale Compute	BG-SOF-1	99.9918%	<u>1</u>	3.3 mins
<u>DigitalOcean</u>	ny1	99.9938%	<u>2</u>	2.68 mins
<u>Vultr</u>	dallas	99.9951%	<u>1</u>	2.12 mins
StratoGen VMware Cloud	denver	99.9976%	<u>1</u>	1.02 mins
IBM Cloud Compute	MEL	99.9984%	1	41 secs
StratoGen VMware Cloud	docklands	99.9985%	<u>1</u>	39 secs
<u>Alibaba Elastic Compute</u> Service	ap-northeast-1	100%	0	None

https://cloudharmony.com/status

Adaptive Multi-Cloud Storage

Adaptive Multi-Cloud Storage

- noAccess probability
- Upload speed (MB/s)
- Download speed(MB/s)

Adaptive Multi-Cloud Storage

Zero Trust uncertainty in clouds

- Shared resources
- Hybrid infrastructure
- Illusion of infinite computing resources on demand
- Scalability and flexibility (dynamic elasticity)
- Massive, diverse, incomplete, heterogeneous data
- Virtualization, loosely coupling applications to the infrastructure
- Resource provisioning time variation
- Variation in data transmission
- Workload uncertainty

- How to select parameters of the storage?
- How many storages should be used?
- How to select clouds from available?

Dynamic Cloud Selection

- Estimate and classify reliability levels
- Find adequate settings.

Dynamically adapt settings for security concerns

Dynamic Cloud Selection

Experimental Analysis

Zero Trust in Al

Health Care case

• Machine Learning tools as a component of cloud computing.

A critical limitation of the adoption of MLaaS

 low protection of sensitive data in an unsecured shared environment

Open problem: Privacy-preserving ML

Deep Neural Networks (DNN)

DNN has been used in several disciplines, including

- medical image classification
- segmentation tasks:
- X-ray
- MRI
- Histopathology
- Positron Emission Tomography (PET)

- Privacy and security issues
- Large volume of images
- Variability in image quality

AI for Health Care

- a. Breast cancer
- b. Skin cancer
- c. Brain tumor
- d. COVID-19 screening
- e. Thyroid ultrasound
- f. Alzheimer's disease etc,

- progressive neurodegenerative disease that affects
 - memory, thinking, orientation, and behavior
- most common form of dementia worldwide
 - 10% of older adults (Seniors) in México suffer from it

Sano

Alzheimer

AD causes gradual morphological changes in a brain

Magnetic Resonance Imaging (MRI)

standard method of AD detection

Alzheimer 4 classes

Normal

Mild

Moderate

Severe

AD classification

Para la clasificación de la EA por IRM existen dos vías ➤ Clasificación Binaria

S

ΕA

Clasificación Multiclase

Clases	Abreviación
Sano	S
Deterioro cognitivo leve	DCL
Alzheimer	EA
No demente	ND
Demente muy leve	DML
Demente leve	DL
Dementes moderados	DM

Regulations

Hospitals handle a large volume of data such as:

- Personal data
- Medical Records
- Studies
 - Laboratory
 - Electrocardiograms
 - Image

Magnetic Resonance Imaging MRI

There are regulations in place to manage this data.

- Sensitive Data
- Patient privacy must be ensured.
- Data anonymization is required

There are challenges in accessing this data:

- Data sharing
- Database creation
- Training computational models

Federated Learning

A way to Zero Trust

Federated Learning in Health Care

Types of Federated Learning

Horizontal: Mismas características, pero diferentes instancias
 Vertical: Mismas instancias, pero con características diferentes

Horizontal FL

Federated Learning Type	Data Distribution	Description
Horizontal (HFL)	Same columns, different rows.	Multiple nodes with the same features but different instances.
Vertical (VFL)	Different columns, same rows.	Multiple nodes with different features about the same instances.
Federated Transfer	Different columns and	Combines FL with transfer learning for
Learning	different rows.	heterogeneous data.
Semi-Supervised	Combination of labeled and unlabeled data.	Utilizes labeled and unlabeled data across nodes.
Asynchronous	No synchronization required between nodes.	Allows asynchronous model updates between nodes.
Hybrid	Combination of different columns and rows.	Combines characteristics of HFL and VFL for heterogeneous data.

Homomorphic Encryption

Privacy Preserving Processing

Para Privacy Preserving Processing: Cryptography does not help

	ORIGINAL	CODED	ORIGINAL	CODED
	A	В	N	0
Hello.	В	С	0	P
Do you want to	С	D	P	Q
What do you t	D	E	Q	R
10	E	F	R	S
Ifmmp.	F	G	S	T
Ep zpv xbou up	G	Н	Т	U
ibu ep zpv	Н	1	U	V
	1	J	V	W
	J	K	W	X
	K	L	X	Y
F	L	M	Y	wikitio

Caesar cipher

Enigma

CICESE Parallel Computing Laboratory

R•-•

Homomorphic Encryption foundation

• A function applied to ciphertexts provides the same (after decryption) result as applying the function to the original unencrypted data.

- Lattice-based schemes whose security is based on the hardness of the Learning with Errors (LWE) or Ring LWE (RLWE) problems.
- Homomorphic Encryption (HE) exploits the hardness of identifying a secret sk from noisy pairs of the form $pk = (b, a) = ([-(a \cdot sk + e)]_q, a)$

where *sk*, *a*, *e* \in *R*_{*q*} = $\mathbb{Z}_{q}[X]/(X^{n} + 1)$,

- $a \leftarrow U(R_q)$ and $e \leftarrow \chi_{err}$.
- Encrypt: $(m, 0) + pk = (m a \cdot sk + e, 0 + a) = (c_0, c_1) = c$ (two polynomials)
- Decrypt: $m' = c_0 + c_1 \cdot sk = m a \cdot sk + e + a \cdot sk = m + e \approx m$

Polynomial ring R= $\mathbb{Z}[X]/f(X)$, where

- $\mathbb{Z}[X]$ polynomial ring with coefficients in \mathbb{Z}
- f(x) is a cyclotomic polynomial of degree d that is the unique irreducible polynomial with integer coefficients that is a divisor of xⁿ-1

In practice, $f(x)=X^d+1$ and $d=2^n$.

Elements of R are polynomials of degree less than d and coefficients in \mathbb{Z} .

- q coefficients modulus
- $R_q[x] = \mathbb{Z}_q[x]/f(x)$
- $\mathbb{Z}_q[x]$ polynomial ring with coefficients modulo q.
- R_q[x] are polynomials of degree less than d and coefficients modulo q.
- [x] rounding to the nearest integer.
- χerr and χkey are distributions

Secret key is a polynomial sk <- χ_{key} with binary coefficients randomly sampled from χ_{key} .

Public key pk is a couple of two polynomials $\mathbf{pk} = (b, a) = ([-(a \cdot sk + e)]_q, a)$

Public key is sampled *a* from the ring R_{q} , a <- R_{q} , and a random error e from χ err e <- χ err.

HE taxonomy

By supported arithmetic operations

Partially homomorphic Encryption (PHE):

Supports only addition or multiplication.

Somewhat Homomorphic Encryption (SWHE):

- Bounded additions and multiplications
- Computationally cheap.
- No bootstrapping
- Pre-2009 schemes were somewhat homomorphic.

Fully Homomorphic Encryption (FHE)

- Unbounded additions and multiplications
- Computationally expensive
- Bootstrapping notion

By type of data

Logical (Boolean)

- FHEW
- TFHE

Integer based

- Brakerski-Gentry-Vaikuntanathan (BGV)
- Brakerski/Fan-Vercauteren (BFV)
- Lopez-Tromer-Vaikuntanathan (LTV)
- Doroz-Hu-Sunar (DHS)

Fixed-precision numbers

Cheon-Kim-Kim-Song (CKKS)

General-purpose HE libraries

Tool	Support	Pros	Cons
SEAL	Microsoft	Well-documented Easy security parameters setting	Poor flexibility Limited number of supported schemes
HElib	IBM	Efficient homomorphic operations	LowbootstrappingperformancesecurityComplicatedsecurityparameter settingsecurity
TFHE		Fast bootstrapping	Poor performance for simple
PALISADE OpenFHE	DARPA, MIT, UCSD, etc.	Multiple HE schemes Cross-platform	
cuHE		Mass parallelism and high memory bandwidth of GPUs	Poor documentation and support
HEAAN	Seoul National University	Operations between rational numbers	
HE- transformer	Intel	Integration with deep learning libraries	Extension of SEAL

Homomorphic Neural Network

Approximating an activation function

 $\overline{y} = \overline{w}_1 \ \overline{x}_1 + \overline{w}_2 \ \overline{x}_2 + \cdots + \overline{w}_i \ \overline{x}_i$

Aproximating sign (time)

Homomorphic operations:

	_	K and an	F	pt_{ε} Decrypt_{\varepsilon}	$Evaluate_{\varepsilon}$	
	ε	KeyGen _e	$Encrypt_{\varepsilon}$		Ψ̈́	×
л	BFV	60.076	5.0547	0.8883	1.3172	4.0361
P_1	CKKS	84.378	7.1897	0.7021	1.7650	2.9165
л	BFV	404.897	12.5529	2.9475	3.5390	33.7440
P_2	CKKS	1,351.270	26.0943	6.2270	11.7310	30.2540

Timings (ms) for the four processes in a HE scheme

Operations:

- Addition: 0.087 ms, HE 11.7310 ms
- Multiplication: 0.099 ms, HE 30.2540
- Comparison: 0.0464 milliseconds, HE 143.28 ms

HE comparison needs to be optimized; otherwise, it is inapplicable.

Performance (ms) of state-of-the-art homomorphic comparison approaches

Approach	Generation time	Comparison time
Least-squares	0.61	143.28
Chebyshev	0.56	121.65
Iterative	-	1,671.14
Fourier sequence	1.26	132.91
Newton-Raphson	0.38	98.91
Composition	0.42	99.02

Slight improvements of homomorphic comparison are high steps toward a privacy-preserving model

Preserving Privacy in Neural Network Processing with Homomorphic Encryption

Self-Learning Activation Functions

 We approximate the activation function by a polynomial at each neuron independently with trainable coefficients as

$$\bar{y}_k \leftarrow \ddot{f}_k \left(\sum \left(\overline{w}_i^k \stackrel{\times}{\times} c_i^k \right) \stackrel{\sim}{+} \bar{\beta}_k \right)$$

$$\ddot{f}_k = a_0^k + a_1^k x + a_2^k x^2 + \dots + a_n^k x^n$$

where $a_0^k, a_1^k, \dots, a_n^k$ denote the trainable coefficients of the polynomial \ddot{f}_k at neuron k.

- Activation function approximation is optimized for a given problem and dataset. $\overline{\bar{x}}$ \overline{w}_1
- Training process aims to find:

✓ Weights w

✓ Coefficients
$$a_0^k$$
, a_1^k , ..., a_n^k

Homomorphic neuron k with a SLAF \hat{f}_k

Federated Learning privacy preserving

Thanks for the team

and collaborators

Thanks for your attention!

Thanks for your attention!